Kontext Copilot - An AI-powered assistant for data analytics that runs on your local computer. Learn more
Get started
Flatten Pandas DataFrame after Aggregate
insights Stats
warning Please login first to view stats information.
Kontext
Code Snippets & Tips
Code snippets and tips for various programming languages/frameworks. All code examples are under MIT or Apache 2.0 license unless specified otherwise.
Code description
In code snippet Pandas DataFrame Group by one Column and Aggregate using MAX, MIN, MEAN and MEDIAN, it shows how to do aggregations in a pandas DataFrame. This code snippet shows you how to flatten the DataFrame (multiindex) after aggregations.
Sample output:
category value_max value_min value_mean value_median
0 A 90 0 45 45
1 B 91 1 46 46
2 C 92 2 47 47
3 D 93 3 48 48
4 E 94 4 49 49
5 F 95 5 50 50
6 G 96 6 51 51
7 H 97 7 52 52
8 I 98 8 53 53
9 J 99 9 54 54
Code snippet
import pandas as pd categories = [] values = [] for i in range(0,100): categories.append(chr(i%10+65)) values.append(i) df = pd.DataFrame({'category': categories, 'value':values}) print(df) # Aggregate df_agg = df.groupby(by=['category']) \ .aggregate({"value": ['max', 'min', 'mean', 'median']}) # Flatten DataFrame df_agg.columns = ['_'.join(col) for col in df_agg.columns] df_agg = df_agg.reset_index() print(df_agg)
copyright
This page is subject to Site terms.
comment Comments
No comments yet.