Spark SQL - LAG Window Function
insights Stats
Apache Spark installation guides, performance tuning tips, general tutorials, etc.
*Spark logo is a registered trademark of Apache Spark.
About LAG function
Spark LAG function provides access to a row at a given offset that comes before the current row in the windows. This function can be used in a SELECT statement to compare values in the current row with values in a previous row.
Function signature
lag(input[, offset[, default]]) OVER ([PARYITION BY ..] ORDER BY ...)
- offset: the default value of parameter `offset` is 1.
- default: the default value of `default` is null.
If the value of `input` at the `offset`th row is null, null is returned. If there is no such offset row (e.g., when the offset is 1, the first row of the window does not have any previous row), `default` is returned.
Example
The following sample SQL uses LAG function to find the previous transaction record's amount based on DATE for each account. No default value is specified.
SELECT TXN.*, LAG(AMT,1) OVER (PARTITION BY ACCT ORDER BY TXN_DT) AS AMT_PREV FROM VALUES (101,10.01, DATE'2021-01-01'), (101,102.01, DATE'2021-01-01'), (102,93., DATE'2021-01-01'), (103,913.1, DATE'2021-01-02'), (102,913.1, DATE'2021-01-02'), (101,900.56, DATE'2021-01-03') AS TXN(ACCT,AMT, TXN_DT);
Result:
ACCT AMT TXN_DT AMT_PREV 101 10.01 2021-01-01 NULL 101 102.01 2021-01-01 10.01 101 900.56 2021-01-03 102.01 103 913.10 2021-01-02 NULL 102 93.00 2021-01-01 NULL 102 913.10 2021-01-02 93.00
Example table
The virtual table/data frame is cited from SQL - Construct Table using Literals.