Read JSON file as Spark DataFrame in Python / Spark

access_time 2 years ago visibility8659 comment 0

Spark has easy fluent APIs that can be used to read data from JSON file as DataFrame object. 

In this code example,  JSON file named 'example.json' has the following content:

[ { "Category": "Category A", "Count": 100, "Description": "This is category A" }, { "Category": "Category B", "Count": 120, "Description": "This is category B" }, { "Category": "Category C", "Count": 150, "Description": "This is category C" } ]



The file is loaded as a Spark DataFrame using SparkSession.read.json function.

multiLine=True argument is important as the JSON file content is across multiple lines. 

Code snippet

from pyspark.sql import SparkSession
from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType

appName = "PySpark Example - JSON file to Spark Data Frame"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \
    .getOrCreate()

# Create a schema for the dataframe
schema = StructType([
    StructField('Category', StringType(), True),
    StructField('Count', IntegerType(), True),
    StructField('Description', StringType(), True)
])

# Create data frame
json_file_path = 'data/example.json'
df = spark.read.json(json_file_path, schema, multiLine=True)
print(df.schema)
df.show()
info Last modified by Raymond 2 months ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

More from Kontext

visibility 822
thumb_up 1
access_time 5 months ago

Apache Kafka is written with Scala. Thus, the most natural way is to use Scala (or Java) to call Kafka APIs, for example, Consumer APIs and Producer APIs. For Python developers, there are open source packages available that function similar as official Java clients.  This article shows you ...

visibility 2164
thumb_up 0
access_time 9 months ago

CSV is a common data format used in many applications. It's also a common task for data workers to read and parse CSV and then save it into another storage such as RDBMS (Teradata, SQL Server, MySQL). In my previous article  PySpark Read Multiple Lines Records from CSV I demonstrated how to ...

visibility 66
thumb_up 1
access_time 2 years ago

Different programming languages have different package management tools.