access_time 2 years ago languageEnglish

Read JSON file as Spark DataFrame in Python / Spark

visibility 11,474 comment 0

Spark has easy fluent APIs that can be used to read data from JSON file as DataFrame object. 

In this code example,  JSON file named 'example.json' has the following content:

[ { "Category": "Category A", "Count": 100, "Description": "This is category A" }, { "Category": "Category B", "Count": 120, "Description": "This is category B" }, { "Category": "Category C", "Count": 150, "Description": "This is category C" } ]

The file is loaded as a Spark DataFrame using function.

multiLine=True argument is important as the JSON file content is across multiple lines. 

Code snippet

from pyspark.sql import SparkSession
from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType

appName = "PySpark Example - JSON file to Spark Data Frame"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \

# Create a schema for the dataframe
schema = StructType([
    StructField('Category', StringType(), True),
    StructField('Count', IntegerType(), True),
    StructField('Description', StringType(), True)

# Create data frame
json_file_path = 'data/example.json'
df =, schema, multiLine=True)
info Last modified by Raymond 5 months ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts