Pandas DataFrame Plot - Bar Chart

access_time 10 months ago visibility2142 comment 0

Recently, I've been doing some visualization/plot with Pandas DataFrame in Jupyter notebook. In this article I'm going to show you some examples about plotting bar chart (incl. stacked bar chart with series) with Pandas DataFrame. I'm using Jupyter Notebook as IDE/code execution environment. 

Prepare the data

Use the following code snippet to create a Pandas DataFrame object in memory:

import pandas as pd
from datetime import datetime

def str_to_date(str):
    return datetime.strptime(str, '%Y-%m-%d').date()

data = [{'DATE':str_to_date('2020-01-01'), 'TYPE': 'TypeA', 'SALES': 1000},
        {'DATE':str_to_date('2020-01-01'), 'TYPE': 'TypeB', 'SALES': 200},
        {'DATE':str_to_date('2020-01-01'), 'TYPE': 'TypeC', 'SALES': 300},
        {'DATE':str_to_date('2020-02-01'), 'TYPE': 'TypeA', 'SALES': 700},
        {'DATE':str_to_date('2020-02-01'), 'TYPE': 'TypeB', 'SALES': 400},
        {'DATE':str_to_date('2020-02-01'), 'TYPE': 'TypeC', 'SALES': 500},
        {'DATE':str_to_date('2020-03-01'), 'TYPE': 'TypeA', 'SALES': 300},
        {'DATE':str_to_date('2020-03-01'), 'TYPE': 'TypeB', 'SALES': 900},
        {'DATE':str_to_date('2020-03-01'), 'TYPE': 'TypeC', 'SALES': 100}
df = pd.DataFrame(data)

The content of the dataframe looks like the following:


We will use this dataframe to create visuals/charts.

pandas.DataFrame.plot function

Refer to the following documentation about pandas.DataFrame.plot function.


* If you are using different version of Pandas, please navigate to the corresponded document version.


Plot function depends on matplotlib, please ensure you have it installed in your system. If not, you can use the following command to install it:

!pip install matplotlib

The output looks like this:

Bar chart

Use the following code to plot a bar chart:

df.plot(kind='bar', x='DATE', y='SALES')

The chart looks like the following:

Bar chart - groupby

Let's add a groupby and see how it looks like:


The output is slightly better as it added TYPE to X-axis. 

Bar chart - groupby and unstack

Let's unstack the dataframe after groupby.


The output now looks like this:

It is what we are looking for however there is a work 'None' in the legend.

To get rid of that, we just need to specify y attribute.


The chart now looks like this:

Stacked bar chart

Setting parameter stacked to True in plot function will change the chart to a stacked bar chart.

df.groupby(['DATE','TYPE']).sum().unstack().plot(kind='bar',y='SALES', stacked=True)

Cumulative stacked bar chart

To create a cumulative stacked bar chart, we need to use groupby function again:

df.groupby(['DATE','TYPE']).sum().groupby(level=[1]).cumsum().unstack().plot(kind='bar',y='SALES', stacked = True)

The chart now looks like this:

We group by level=[1] as that level is Type level as we want to accumulate sales by type.

Horizontal bar chart

To create horizontal bar charts, we just need to change chart kind to barh.


info Last modified by Administrator 2 months ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

Follow Kontext

Get our latest updates on LinkedIn or Twitter.

Want to publish your article on Kontext?

Learn more

More from Kontext

Kafka Topic Partitions Walkthrough via Python
visibility 913
thumb_up 0
access_time 5 months ago

Partition is the parallelism unit in a Kafka cluster. Partitions are replicated in Kafka cluster (cluster of brokers) for fault tolerant and throughput. This articles show you how to work with Kafka partitions using Python as programming language. Package kafka-python will be used in the ...

visibility 33968
thumb_up 0
access_time 2 years ago

In Spark, SparkContext.parallelize function can be used to convert Python list to RDD and then RDD can be converted to DataFrame object. The following sample code is based on Spark 2.x. In this page, I am going to show you how to convert the following list to a data frame: data = [('Category A' ...

visibility 7
thumb_up 0
access_time 2 days ago

To connect to MySQL in Python, there are various approaches: JDBC driver - JayDeBeApi python wrapper package. Native python MySQL packages, for example, MySQL connector, etc.  This article provides an example of using MySQL connector package to connect to MySQL. Python 3 MySQL server.