Pandas DataFrame Plot - Pie Chart

This article provides examples about plotting pie chart using pandas.DataFrame.plot function.

Prerequisites

The data I'm going to use is the same as the other article Pandas DataFrame Plot - Bar Chart. I'm also using Jupyter Notebook to plot them.

The DataFrame has 9 records:

DATETYPESALES
02020-01-01TypeA1000
12020-01-01TypeB200
22020-01-01TypeC300
32020-02-01TypeA700
42020-02-01TypeB400
52020-02-01TypeC500
62020-03-01TypeA300
72020-03-01TypeB900
82020-03-01TypeC100


Pie chart

df.groupby(['TYPE']).sum().plot(kind='pie', y='SALES')

The above code outputs the following chart:

Shadow effect

df.groupby(['TYPE']).sum().plot(kind='pie', y='SALES', shadow = True)

Start angle

df.groupby(['TYPE']).sum().plot(kind='pie', y='SALES', shadow = True, startangle=90)

Subplots (trellis)

We can also easily implement subplots/trellis charts.

Let's add derive one more column on the existing DataFrame using the following code:

df['COUNT'] = df['SALES'] /100
df

The dataframe now looks like this:

DATETYPESALESCOUNT
02020-01-01TypeA100010.0
12020-01-01TypeB2002.0
22020-01-01TypeC3003.0
32020-02-01TypeA7007.0
42020-02-01TypeB4004.0
52020-02-01TypeC5005.0
62020-03-01TypeA3003.0
72020-03-01TypeB9009.0
82020-03-01TypeC1001.0


Now we can plot the charts using the following code:

df.groupby(['TYPE']).sum().plot(kind='pie', subplots=True, shadow = True,startangle=90,figsize=(15,10))

In the above code, subplots=True parameter is used to plot charts on both SALES and COUNT metrics. The chart size is also increased using figsize parameter.

The chart now looks like the following screenshot:

Add percentage

df.groupby(['TYPE']).sum().plot(kind='pie', subplots=True, shadow = True,startangle=90,
figsize=(15,10), autopct='%1.1f%%')


info Last modified by Raymond at 4 months ago copyright This page is subject to Site terms.

More from Kontext

local_offer teradata local_offer python

visibility 1035
thumb_up 1
access_time 4 months ago

Pandas is commonly used by Python users to perform data operations. In many scenarios, the results need to be saved to a storage like Teradata. This article shows you how to do that easily using JayDeBeApi or  ...

open_in_new Spark + PySpark

local_offer python

visibility 317
thumb_up 0
access_time 4 months ago

CSV is a common data format used in many applications. It's also a common task for data workers to read and parse CSV and then save it into another storage such as RDBMS (Teradata, SQL Server, MySQL). In my previous article  ...

open_in_new Python Programming

local_offer teradata local_offer python local_offer Java

visibility 584
thumb_up 0
access_time 4 months ago

Python JayDeBeApi module allows you to connect from Python to Teradata databases using Java JDBC drivers. In article Connect to Teradata database through Python , I showed ho...

open_in_new Python Programming

local_offer pandas local_offer sqlite

visibility 319
thumb_up 0
access_time 4 months ago

In my previous posts, I showed how to use  jaydebeapi or sqlite3 pack...

open_in_new Python Programming

comment Comments (0)

comment Add comment

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

No comments yet.

Kontext Column

Created for everyone to publish data, programming and cloud related articles. Follow three steps to create your columns.


Learn more arrow_forward