By using this site, you acknowledge that you have read and understand our Cookie policy, Privacy policy and Terms .
close

Apache Spark installation guides, performance tuning tips, general tutorials, etc.

rss_feed Subscribe RSS

In Spark, SparkContext.parallelize function can be used to convert Python list to RDD and then RDD can be converted to DataFrame object. The following sample code is based on Spark 2.x.

In this page, I am going to show you how to convert the following list to a data frame:

data = [('Category A', 100, "This is category A"),
        ('Category B', 120, "This is category B"),
        ('Category C', 150, "This is category C")]

Import types

First, let’s import the data types we need for the data frame.

from pyspark.sql import SparkSession

from pyspark.sql.types import StructField, StructType, StringType, IntegerType

We imported StringType and IntegerType because the sample data have three attributes, two are strings and one is integer.

Create Spark session

Create Spark session using the following code:

from pyspark.sql import SparkSession
from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType

appName = "PySpark Example - Python Array/List to Spark Data Frame"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \
    .getOrCreate()

Define the schema

Let’s now define a schema for the data frame based on the structure of the Python list.

# Create a schema for the dataframe
schema = StructType([
    StructField('Category', StringType(), True),
    StructField('Count', IntegerType(), True),
    StructField('Description', StringType(), True)
])

Convert the list to data frame

The list can be converted to RDD through parallelize function:

# Convert list to RDD
rdd = spark.sparkContext.parallelize(data)

# Create data frame
df = spark.createDataFrame(rdd,schema)
print(df.schema)
df.show()

Complete script

from pyspark.sql import SparkSession
from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType

appName = "PySpark Example - Python Array/List to Spark Data Frame"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \
    .getOrCreate()

# List
data = [('Category A', 100, "This is category A"),
        ('Category B', 120, "This is category B"),
        ('Category C', 150, "This is category C")]

# Create a schema for the dataframe
schema = StructType([
    StructField('Category', StringType(), True),
    StructField('Count', IntegerType(), True),
    StructField('Description', StringType(), True)
])

# Convert list to RDD
rdd = spark.sparkContext.parallelize(data)

# Create data frame
df = spark.createDataFrame(rdd,schema)
print(df.schema)
df.show()

Sample output

StructType(List(StructField(Category,StringType,true),StructField(Count,IntegerType,true),StructField(Description,StringType,true)))
+----------+-----+------------------+
|  Category|Count|       Description|
+----------+-----+------------------+
|Category A|  100|This is category A|
|Category B|  120|This is category B|
|Category C|  150|This is category C|
+----------+-----+------------------+

Summary

For Python objects, we can convert them to RDD first and then use SparkSession.createDataFrame function to create the data frame based on the RDD.

The following data types are supported for defining the schema:

  • NullType
  • StringType
  • BinaryType
  • BooleanType
  • DateType
  • TimestampType
  • DecimalType
  • DoubleType
  • FloatType
  • ByteType
  • IntegerType
  • LongType
  • ShortType
  • ArrayType
  • MapType

For more information, please refer to the official API documentation pyspark.sql module.

info Last modified by Raymond at 8 months ago * This page is subject to Site terms.

info About author

More from Kontext

Spark Read from SQL Server Source using Windows/Kerberos Authentication

local_offer pyspark local_offer SQL Server local_offer spark-2-x

visibility 42
thumb_up 0
access_time 23 days ago

In this article, I am going to show you how to use JDBC Kerberos authentication to connect to SQL Server sources in Spark (PySpark). I will use  Kerberos connection with principal names and password directly that requires  ...

open_in_new View

Schema Merging (Evolution) with Parquet in Spark and Hive

local_offer parquet local_offer pyspark local_offer spark-2-x local_offer hive local_offer hdfs

visibility 67
thumb_up 0
access_time 24 days ago

Schema evolution is supported by many frameworks or data serialization systems such as Avro, Orc, Protocol Buffer and Parquet. With schema evolution, one set of data can be stored in multiple files with different but compatible schema. In Spark, Parquet data source can detect and merge schema ...

open_in_new View

local_offer pyspark local_offer spark-2-x local_offer python

visibility 182
thumb_up 0
access_time 2 months ago

This articles show you how to convert a Python dictionary list to a Spark DataFrame. The code snippets runs on Spark 2.x environments. Input The input data (dictionary list looks like the following): data = [{"Category": 'Category A', 'ItemID': 1, 'Amount': 12.40}, ...

open_in_new View

Improve PySpark Performance using Pandas UDF with Apache Arrow

local_offer pyspark local_offer spark local_offer spark-2-x local_offer pandas

visibility 198
thumb_up 4
access_time 2 months ago

Apache Arrow is an in-memory columnar data format that can be used in Spark to efficiently transfer data between JVM and Python processes. This currently is most beneficial to Python users that work with Pandas/NumPy data. In this article, ...

open_in_new View

Kontext Column

Kontext Column

Created for everyone to publish data, programming and cloud related articles. Follow three steps to create your columns.

Learn more arrow_forward
info Follow us on Twitter to get the latest article updates. Follow us