Change Column Type in PySpark DataFrame

access_time 4 months ago visibility2610 comment 0

This article shows how to change column types of Spark DataFrame using Python. For example, convert StringType to DoubleType, StringType to Integer, StringType to DateType.

Construct a dataframe 

Follow article Convert Python Dictionary List to PySpark DataFrame to construct a dataframe.

|  Category| ID| Value|
|Category A|  1| 12.40|
|Category B|  2| 30.10|
|Category C|  3|100.01|

Let's add two constant columns via lit function:

from pyspark.sql.functions import lit

df1 = df.withColumn('Str_Col1', lit('1')).withColumn(
    'Str_Col2', lit('2020-08-09'))


|  Category| ID| Value|Str_Col1|  Str_Col2|
|Category A|  1| 12.40|       1|2020-08-09|
|Category B|  2| 30.10|       1|2020-08-09|
|Category C|  3|100.01|       1|2020-08-09|


As printed out, current data types are StringType, IntegerType, DecimalType, StringType and StringType.

Change column types using cast function

Function DataFrame.cast can be used to convert data types. 

The following code snippet shows some of the commonly used conversions:

from pyspark.sql.types import DateType
df1 = df1.withColumn("Str_Col1_Int", df1['Str_Col1'].cast('int')).drop('Str_Col1') \
    .withColumn('Str_Col2_Date', df1['Str_Col2'].cast(DateType())).drop('Str_Col2')


|  Category| ID| Value|Str_Col1_Int|Str_Col2_Date|
|Category A|  1| 12.40|           1|   2020-08-09|
|Category B|  2| 30.10|           1|   2020-08-09|
|Category C|  3|100.01|           1|   2020-08-09|


As printed out, the two new columns are IntegerType and DataType. 

info Tip: cast function are used differently: one is using implicit type string 'int' while the other one uses explicit type DateType. For the latter, you need to ensure class is imported. 

Run Spark code

You can easily run Spark code on your Windows or UNIX-alike (Linux, MacOS) systems. Follow these articles to setup your Spark environment if you don't have one yet:

info Last modified by Administrator at 4 months ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

Kontext Column

Created for everyone to publish data, programming and cloud related articles.
Follow three steps to create your columns.

Learn more arrow_forward

More from Kontext

local_offer tutorial local_offer pyspark local_offer spark local_offer how-to local_offer spark-dataframe

visibility 815
thumb_up 0
access_time 4 months ago

This article shows how to add a constant or literal column to Spark data frame using Python.  Follow article  Convert Python Dictionary List to PySpark DataFrame to construct a dataframe. +----------+---+------+ | Category| ID| Value| +----------+---+------+ |Category A| 1| ...

local_offer spark local_offer scala

visibility 414
thumb_up 0
access_time 2 years ago

Parquet is columnar store format published by Apache. It's commonly used in Hadoop ecosystem. There are many programming language APIs that have been implemented to support writing and reading parquet files. 

local_offer spark local_offer hadoop local_offer pyspark local_offer oozie local_offer hue

visibility 3763
thumb_up 0
access_time 2 years ago

When submitting Spark applications to YARN cluster, two deploy modes can be used: client and cluster. For client mode (default), Spark driver runs on the machine that the Spark application was submitted while for cluster mode, the driver runs on a random node in a cluster. On this page, I am going ...

About column

Apache Spark installation guides, performance tuning tips, general tutorials, etc.

*Spark logo is a registered trademark of Apache Spark.

rss_feed Subscribe RSS