Pandas DataFrame - Iterate over Rows

event 2022-06-14 visibility 193 comment 0 insights
more_vert
insights Stats
Kontext Kontext Code Snippets & Tips

Code snippets and tips for various programming languages/frameworks. All code examples are under MIT or Apache 2.0 license unless specified otherwise. 

It is not a good practice to iterate over rows in Pandas DataFrame as it is considered as anti-pattern. However, if you really have use cases to iterate through the DataFrame, for example, process rows sequentially, you can use the code snippet in this page. 

Use DataFrame.iteritems()

The following code snippet uses DataFrame.iteritems() function.

import pandas as pd

df = pd.DataFrame({'c1': [1, 2, 3], 'c2': ['A', 'B', 'C']})

for index, row in df.iterrows():
    c1 = row['c1']
    c2 = row['c2']
    print(index)
    print(c1, c2)

Output:

0
1 A
1  
2 B
2  
3 C

Use DataFrame.itertuples()

The following code snippet uses itertuples function.

import pandas as pd

df = pd.DataFrame({'c1': [1, 2, 3], 'c2': ['A', 'B', 'C']})

for tuple in df.itertuples():
    print(tuple)
    print(tuple.Index)
    print(tuple.c1, tuple.c2)

Output:

Pandas(Index=0, c1=1, c2='A')
0
1 A
Pandas(Index=1, c1=2, c2='B')
1
2 B
Pandas(Index=2, c1=3, c2='C')
2
3 C
More from Kontext
comment Comments
No comments yet.

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts