PySpark DataFrame - Add Column using withColumn

visibility 16 access_time 21 days ago languageEnglish
more_vert

New columns can be added to Spark DataFrame using withColumn method. This include constant columns or columns derived using existing columns.

Code snippet

The following script shows how to add a new column by deriving from existing columns.

from pyspark.sql import SparkSession

appName = "PySpark DataFrame - withColumn function"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \
    .getOrCreate()

spark.sparkContext.setLogLevel('WARN')

data = [{"a": "100", "b": "200"},
        {"a": "1000", "b": "2000"}]

df = spark.createDataFrame(data)
df.show()

df = df.withColumn('a+b', df.a + df.b)

df.show()

Output:

+----+----+------+
|   a|   b|   a+b|
+----+----+------+
| 100| 200| 300.0|
|1000|2000|3000.0|
+----+----+------+

You can use any supported Spark SQL functions when deriving the new column. 

Add column with constants

If the purpose is to add constant columns, refer to Add Constant Column to PySpark DataFrame. For literals you can create, refer to Spark SQL - Literals (Constants).

copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts