Use when() and otherwise() with PySpark DataFrame
Code description
In Spark SQL, CASE WHEN clause can be used to evaluate a list of conditions and to return one of the multiple results for each column. The same can be implemented directly using pyspark.sql.functions.when
and pyspark.sql.Column.otherwise
functions. If otherwise
is not used together with when
, None will be returned for unmatched conditions.
Output:
+---+------+ | id|id_new| +---+------+ | 1| 1| | 2| 200| | 3| 3000| | 4| 400| | 5| 5| | 6| 600| | 7| 7| | 8| 800| | 9| 9000| +---+------+
Code snippet
from pyspark.sql import SparkSession from pyspark.sql.functions import when appName = "PySpark when and otherwise Example" master = "local" # Create Spark session spark = SparkSession.builder \ .appName(appName) \ .master(master) \ .getOrCreate() spark.sparkContext.setLogLevel("WARN") df = spark.range(1, 10) df = df.withColumn('id_new', when(df.id % 2 == 0, df.id * 100).when(df.id % 3 == 0, df.id*1000).otherwise(df.id)) df.show()
copyright
This page is subject to Site terms.
comment Comments
No comments yet.