Use expr() Function in PySpark DataFrame
Code description
Spark SQL function expr()
can be used to evaluate a SQL expression and returns as a column (pyspark.sql.column.Column
). Any operators or functions that can be used in Spark SQL can also be used with DataFrame operations.
This code snippet provides an example of using expr()
function directly with DataFrame. It also includes the snippet to derive a column without using this function.
* The code snippet assumes a SparkSession
object already exists as 'spark
'.
Output:
+---+-----+-----+ | id|id_v1|id_v2| +---+-----+-----+ | 1| 11| 11| | 2| 12| 12| | 3| 13| 13| | 4| 14| 14| | 5| 15| 15| | 6| 16| 16| | 7| 17| 17| | 8| 18| 18| | 9| 19| 19| +---+-----+-----+
Code snippet
from pyspark.sql.functions import * df = spark.range(1,10) df = df.withColumn('id_v1', expr("id+10")) df = df.withColumn('id_v2', df.id + 10) df.show()
copyright
This page is subject to Site terms.
comment Comments
No comments yet.