PySpark: Convert JSON String Column to Array of Object (StructType) in Data Frame
insights Stats
Apache Spark installation guides, performance tuning tips, general tutorials, etc.
*Spark logo is a registered trademark of Apache Spark.
This post shows how to derive new column in a Spark data frame from a JSON array string column. I am running the code in Spark 2.2.1 though it is compatible with Spark 1.6.0 (with less JSON SQL functions).
Prerequisites
Refer to the following post to install Spark in Windows.
*If you are using Linux or UNIX, the code should also work.
Requirement
Convert the following list to a data frame:
source = [{"attr_1": 1, "attr_2": "[{\"a\":1,\"b\":1},{\"a\":2,\"b\":2}]"}, {
"attr_1": 2, "attr_2": "[{\"a\":3,\"b\":3},{\"a\":4,\"b\":4}]"}]
The data frame should have two column:
- attr_1: column type is IntegerType
- attr_2: column type is ArrayType (element type is StructType with two StructField).
And the schema of the data frame should look like the following:
root
|-- attr_1: long (nullable = true)
|-- attr_2: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = false)
| | |-- b: integer (nullable = false)
Resolution
Convert list to data frame
First, let’s convert the list to a data frame in Spark by using the following code:
# Read the list into data frame
df = sqlContext.read.json(sc.parallelize(source))
df.show()
df.printSchema()
JSON is read into a data frame through sqlContext. The output is:
+------+--------------------+
|attr_1| attr_2|
+------+--------------------+
| 1|[{"a":1,"b":1},{"...|
| 2|[{"a":3,"b":3},{"...|
+------+--------------------+root
|-- attr_1: long (nullable = true)
|-- attr_2: string (nullable = true)
At current stage, column attr_2 is string type instead of array of struct.
Create a function to parse JSON to list
For column attr_2, the value is JSON array string. Let’s create a function to parse JSON string and then convert it to list.
# Function to convert JSON array string to a list
import json
def parse_json(array_str):
json_obj = json.loads(array_str)
for item in json_obj:
yield (item["a"], item["b"])
Define the schema of column attr_2
# Define the schema
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
json_schema = ArrayType(StructType([StructField('a', IntegerType(
), nullable=False), StructField('b', IntegerType(), nullable=False)]))
Based on the JSON string, the schema is defined as an array of struct with two fields.
Create an UDF
Now, we can create an UDF with function parse_json and schema json_schema.
# Define udf
from pyspark.sql.functions import udf
udf_parse_json = udf(lambda str: parse_json(str), json_schema)
Create a new data frame
Finally, we can create a new data frame using the defined UDF.
# Generate a new data frame with the expected schema
df_new = df.select(df.attr_1, udf_parse_json(df.attr_2).alias("attr_2"))
df_new.show()
df_new.printSchema()
The output is as the following:
+------+--------------+
|attr_1| attr_2|
+------+--------------+
| 1|[[1,1], [2,2]]|
| 2|[[3,3], [4,4]]|
+------+--------------+root
|-- attr_1: long (nullable = true)
|-- attr_2: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = false)
| | |-- b: integer (nullable = false)
Summary
The following is the complete code:
from pyspark import SparkContext, SparkConf, SQLContext
appName = "JSON Parse Example"
master = "local[2]"
conf = SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)
sqlContext = SQLContext(sc)
source = [{"attr_1": 1, "attr_2": "[{\"a\":1,\"b\":1},{\"a\":2,\"b\":2}]"}, {
"attr_1": 2, "attr_2": "[{\"a\":3,\"b\":3},{\"a\":4,\"b\":4}]"}]
# Read the list into data frame
df = sqlContext.read.json(sc.parallelize(source))
df.show()
df.printSchema()
# Function to convert JSON array string to a list
import json
def parse_json(array_str):
json_obj = json.loads(array_str)
for item in json_obj:
yield (item["a"], item["b"])
# Define the schema
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
json_schema = ArrayType(StructType([StructField('a', IntegerType(
), nullable=False), StructField('b', IntegerType(), nullable=False)]))
# Define udf
from pyspark.sql.functions import udf
udf_parse_json = udf(lambda str: parse_json(str), json_schema)
# Generate a new data frame with the expected schema
df_new = df.select(df.attr_1, udf_parse_json(df.attr_2).alias("attr_2"))
df_new.show()
df_new.printSchema()
Save the code as file parse_json.py and then you can use the following command to run it in Spark:
spark-submit parse_json.py
The following screenshot is captured from my local environment (Spark 2.2.1 & Python 3.6.4 in Windows ).