Read JSON file as Spark DataFrame in Scala / Spark

visibility 3,063 access_time 3 years ago languageEnglish timeline Stats
timeline Stats
Page index 2.83
more_horiz

Spark has easy fluent APIs that can be used to read data from JSON file as DataFrame object. 

In this code example,  JSON file named 'example.json' has the following content:

[

  {

    "Category": "Category A",

    "Count": 100,

    "Description": "This is category A"

  },

  {

    "Category": "Category B",

    "Count": 120,

    "Description": "This is category B"

  },

  {

    "Category": "Category C",

    "Count": 150,

    "Description": "This is category C"

  }

]

In the code snippet, the following option is important to let Spark to handle multiple line JSON content:

option("multiLine", true)

Code snippet

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types._

val appName = "Scala Example - JSON file to Spark Data Frame"
val master = "local"

/*Create Spark session with Hive supported.*/
val spark = SparkSession.builder.appName(appName).master(master).getOrCreate()

val schema = StructType(Seq(
  StructField("Category", StringType, true),
StructField("Count", IntegerType, true),
StructField("Description", StringType, true)
))

val json_file_path = "data/example.json"
val df = spark.read.option("multiLine", true).schema(schema).json(json_file_path)
print(df.schema)
df.show()
info Last modified by Raymond 3 years ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

More from Kontext
Save DataFrame as CSV File in Spark
visibility 49,083
thumb_up 3
access_time 2 years ago
Scala: Change Column Type in Spark Data Frame
visibility 2,535
thumb_up 0
access_time 2 years ago