Introduction to PySpark StructType and StructField

Kontext Kontext event 2022-08-17 visibility 1,585
more_vert

In Spark SQL, StructType can be used to define a struct data type that include a list of StructField. A StructField can be any DataType. One of the common usage is to define DataFrame's schema; another use case is to define UDF returned data type.

About DataType in Spark

The following table list all the supported data types in Spark.

Data type Value type in Scala API to access or create a data type
ByteType Byte ByteType
ShortType Short ShortType
IntegerType Int IntegerType
LongType Long LongType
FloatType Float FloatType
DoubleType Double DoubleType
DecimalType java.math.BigDecimal DecimalType
StringType String StringType
BinaryType Array[Byte] BinaryType
BooleanType Boolean BooleanType
TimestampType java.sql.Timestamp TimestampType
DateType java.sql.Date DateType
YearMonthIntervalType java.time.Period YearMonthIntervalType
DayTimeIntervalType java.time.Duration DayTimeIntervalType
ArrayType scala.collection.Seq ArrayType(elementType, [containsNull])
Note: The default value of containsNull is true.
MapType scala.collection.Map MapType(keyType, valueType, [valueContainsNull])
Note: The default value of valueContainsNull is true.
StructType org.apache.spark.sql.Row StructType(fields)
Note: fields is a Seq of StructFields. Also, two fields with the same name are not allowed.
StructField The value type in Scala of the data type of this field(For example, Int for a StructField with the data type IntegerType) StructField(name, dataType, [nullable])
Note: The default value of nullable is true.

*Cited from Data Types - Spark 3.3.0 Documentation.

Use StructType and StructField to define schema

The following code snippet use StructType and StructField to define the schema for the DataFrame. 

infoInfo - Spark and infer schema from most of data sources. Explicit schema definition can be used to ensure input data source match with your target schema.
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, IntegerType

app_name = "PySpark StructType and StructField Exmaple"
master = "local"

spark = SparkSession.builder \
    .appName(app_name) \
    .master(master) \
    .getOrCreate()

spark.sparkContext.setLogLevel("WARN")

data = [['Hello Kontext!', 100], ['Hello Context!', 100]]

# Define the schema for the input data
schema = StructType([StructField('str_col', StringType(), nullable=True),
                     StructField('int_col', IntegerType(), nullable=True)])

# Create a DataFrame with the schema provided
df = spark.createDataFrame(data=data, schema=schema)

print(df.schema)

df.show()

Run the above PySpark script, the output looks like the following:

StructType([StructField('str_col', StringType(), True), StructField('int_col', IntegerType(), True)])

+--------------+-------+
|       str_col|int_col|
+--------------+-------+
|Hello Kontext!|    100|
|Hello Context!|    100|
+--------------+-------+

One thing to know is that StructField and also use StructType itself as data type. This is referred as nested struct type. Refer to PySpark DataFrame - Expand or Explode Nested StructType for some examples.

Use StructType and StructField in UDF

When creating user defined functions (UDF) in Spark, we can also explicitly specify the schema of returned data type though we can directly use @udf or @pandas_udf decorators to infer the schema. 

The following code snippet provides one example of explicit schema for UDF.

from pyspark.sql.functions import udf

@udf(IntegerType())
def custom_udf(str):
    return len(str)


df = df.withColumn('str_len', custom_udf(df.str_col))

df.show()

Output:

+--------------+-------+-------+
|       str_col|int_col|str_len|
+--------------+-------+-------+
|Hello Kontext!|    100|     14|
|Hello Context!|    100|     14|
+--------------+-------+-------+
More from Kontext
comment Comments
No comments yet.

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts