Kontext Copilot - An AI-powered assistant for data analytics that runs on your local computer. Learn more
Get started
PySpark DataFrame - Add Row Number via row_number() Function
insights Stats
warning Please login first to view stats information.
Kontext
Code Snippets & Tips
Code snippets and tips for various programming languages/frameworks. All code examples are under MIT or Apache 2.0 license unless specified otherwise.
Code description
In Spark SQL, row_number
can be used to generate a series of sequential number starting from 1 for each record in the specified window. Examples can be found in this page: Spark SQL - ROW_NUMBER Window Functions.
This code snippet provides the same approach to implement row_number
directly using PySpark DataFrame APIs instead of Spark SQL. It created a window that partitions the data by ACCT
attribute and sorts the records in each partition via TXN_DT
column in descending order. The frame boundary of the window is defined as unbounded preceding and current row.
Output:
+----+------+-------------------+ |ACCT| AMT| TXN_DT| +----+------+-------------------+ | 101| 10.01|2021-01-01 00:00:00| | 101|102.01|2021-01-01 00:00:00| | 102| 93.0|2021-01-01 00:00:00| | 103| 913.1|2021-01-02 00:00:00| | 101|900.56|2021-01-03 00:00:00| +----+------+-------------------+ +----+------+-------------------+------+ |ACCT| AMT| TXN_DT|rownum| +----+------+-------------------+------+ | 101|900.56|2021-01-03 00:00:00| 1| | 101| 10.01|2021-01-01 00:00:00| 2| | 101|102.01|2021-01-01 00:00:00| 3| | 102| 93.0|2021-01-01 00:00:00| 1| | 103| 913.1|2021-01-02 00:00:00| 1| +----+------+-------------------+------+
Code snippet
from pyspark.sql import SparkSession, Window from datetime import datetime from pyspark.sql.functions import row_number, desc app_name = "PySpark row_number Window Function" master = "local" spark = SparkSession.builder \ .appName(app_name) \ .master(master) \ .getOrCreate() spark.sparkContext.setLogLevel("WARN") data = [ [101, 10.01, datetime.strptime('2021-01-01', '%Y-%m-%d')], [101, 102.01, datetime.strptime('2021-01-01', '%Y-%m-%d')], [102, 93.0, datetime.strptime('2021-01-01', '%Y-%m-%d')], [103, 913.1, datetime.strptime('2021-01-02', '%Y-%m-%d')], [101, 900.56, datetime.strptime('2021-01-03', '%Y-%m-%d')] ] df = spark.createDataFrame(data, ['ACCT', 'AMT', 'TXN_DT']) df.show() window = Window.partitionBy('ACCT').orderBy(desc("TXN_DT")).rowsBetween( Window.unboundedPreceding, Window.currentRow) df = df.withColumn('rownum', row_number().over(window)) df.show()
info Last modified by Kontext 3 years ago
copyright
This page is subject to Site terms.
comment Comments
No comments yet.