Convert List to Spark Data Frame in Python / Spark

access_time 2 years ago visibility4691 comment 0

In Spark, SparkContext.parallelize function can be used to convert list of objects to RDD and then RDD can be converted to DataFrame object through SparkSession.

In PySpark, we can convert a Python list to RDD using SparkContext.parallelize function.

|  Category|Count|       Description|
|Category A|  100|This is category A|
|Category B|  120|This is category B|
|Category C|  150|This is category C|

Code snippet

from pyspark.sql import SparkSession
from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType, DecimalType
from decimal import Decimal

appName = "PySpark Example - Python Array/List to Spark Data Frame"
master = "local"

# Create Spark session
spark = SparkSession.builder \
    .appName(appName) \
    .master(master) \

# List
data = [('Category A', Decimal(100), "This is category A"),
        ('Category B', Decimal(120), "This is category B"),
        ('Category C', Decimal(150), "This is category C")]

# Create a schema for the dataframe
schema = StructType([
    StructField('Category', StringType(), True),
    StructField('Count', DecimalType(), True),
    StructField('Description', StringType(), True)

# Convert list to RDD
rdd = spark.sparkContext.parallelize(data)

# Create data frame
df = spark.createDataFrame(rdd,schema)
info Last modified by Raymond 6 months ago copyright This page is subject to Site terms.
Like this article?
Share on

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts

More from Kontext

visibility 41
thumb_up 0
access_time 2 years ago

JSON is commonly used in modern applications for data storage and transfers. Pretty much all programming languages provide APIs to parse JSON. 

visibility 11727
thumb_up 1
access_time 2 years ago

This article shows how to convert a Python dictionary list to a DataFrame in Spark using Python. data = [{"Category": 'Category A', "ID": 1, "Value": 12.40}, {"Category": 'Category B', "ID": 2, "Value": 30.10}, {"Category": 'Category C', "ID": 3, "Value": 100.01} ] The ...

visibility 833
thumb_up 1
access_time 5 months ago

Apache Kafka is written with Scala. Thus, the most natural way is to use Scala (or Java) to call Kafka APIs, for example, Consumer APIs and Producer APIs. For Python developers, there are open source packages available that function similar as official Java clients.  This article shows you ...