Code description
PySpark SQL APIs provides regexp_replace
built-in function to replace string values that match with the specified regular expression.
It takes three parameters: the input column of the DataFrame, regular expression and the replacement for matches.
pyspark.sql.functions.regexp_replace(str, pattern, replacement)
Output
The following is the output from this code snippet:
+--------------+-------+----------------+
| str_col|int_col|str_col_replaced|
+--------------+-------+----------------+
|Hello Kontext!| 100| Hello kontext!|
|Hello Context!| 100| Hello kontext!|
+--------------+-------+----------------+
All uppercase 'K' or 'C' are replaced with lowercase 'k'.
Code snippet
from pyspark.sql import SparkSession
from pyspark.sql.functions import regexp_replace
app_name = "PySpark regex sql functions"
master = "local"
spark = SparkSession.builder .appName(app_name) .master(master) .getOrCreate()
spark.sparkContext.setLogLevel("WARN")
# Create a DataFrame
df = spark.createDataFrame(
[['Hello Kontext!', 100], ['Hello Context!', 100]], ['str_col', 'int_col'])
# Replace str_col with regular expressions
df = df.withColumn('str_col_replaced',
regexp_replace('str_col', r'[C|K]', 'k'))
df.show()