Spark 3.0.1: Connect to HBase 2.4.1

Raymond Raymond event 2021-02-05 visibility 7,061 comment 18
more_vert
Spark 3.0.1: Connect to HBase 2.4.1

Spark doesn't include built-in HBase connectors. We can use HBase Spark connector or other third party connectors to connect to HBase in Spark.

Prerequisites

If you don't have Spark or HBase available to use, you can follow these articles to configure them.

Spark

Apache Spark 3.0.1 Installation on Linux or WSL Guide

HBase

Install HBase in WSL - Pseudo-Distributed Mode

Prepare HBase table with data

Run the following commands in HBase shell to prepare a sample table that will be used in the following sections.

create 'Person', 'Name', 'Address'
put 'Person', '1', 'Name:First', 'Raymond'
put 'Person', '1', 'Name:Last', 'Tang'
put 'Person', '1', 'Address:Country', 'Australia'
put 'Person', '1', 'Address:State', 'VIC'

put 'Person', '2', 'Name:First', 'Dnomyar'
put 'Person', '2', 'Name:Last', 'Gnat'
put 'Person', '2', 'Address:Country', 'USA'
put 'Person', '2', 'Address:State', 'CA'

The table returns the following result when scanning:

scan 'Person'
ROW                             COLUMN+CELL
 1                              column=Address:Country, timestamp=2021-02-05T20:48:42.088, value=Australia
 1                              column=Address:State, timestamp=2021-02-05T20:48:46.750, value=VIC
 1                              column=Name:First, timestamp=2021-02-05T20:48:32.544, value=Raymond
 1                              column=Name:Last, timestamp=2021-02-05T20:48:37.085, value=Tang
 2                              column=Address:Country, timestamp=2021-02-05T20:49:00.692, value=USA
 2                              column=Address:State, timestamp=2021-02-05T20:49:04.972, value=CA
 2                              column=Name:First, timestamp=2021-02-05T20:48:51.653, value=Dnomyar
 2                              column=Name:Last, timestamp=2021-02-05T20:48:56.665, value=Gnat
2 row(s)

Build HBase Spark connector

infoIf you don't want to build the packages by yourself, please go to Summary section to directly download the binary package I built using the following approach. The built package is only provided for testing & learn purposes. 

We need to build HBase Spark Connector for Spark 3.0.1 as it is not published on Maven repository.

Refer to official repo hbase-connectors/spark at master · apache/hbase-connectors for more details. 

1) Clone the repository using the following command:

git clone https://github.com/apache/hbase-connectors.git

2) Install Maven if it is not available on your WSL:

Install Maven on WSL

3) Change directory to the clone repo:

cd hbase-connectors/
4) Build the project using the following command:

mvn -Dspark.version=3.0.1 -Dscala.version=2.12.10 -Dscala.binary.version=2.12 -Dhbase.version=2.2.4 -Dhadoop.profile=3.0 -Dhadoop-three.version=3.2.0 -DskipTests -Dcheckstyle.skip -U clean package

The version arguments need to match with your Hadoop, Spark and HBase versions. 

infoFor HBase version, I have to use 2.2.4 as the latest hbase-connector code was based on that version. Otherwise the built will fail with error like this: [ERROR] ../hbase-connectors/kafka/hbase-kafka-proxy/src/main/java/org/apache/hadoop/hbase/kafka/KafkaTableForBridge.java:[53,8] org.apache.hadoop.hbase.kafka.KafkaTableForBridge is not abstract and does not override abstract method getRegionLocator() in org.apache.hadoop.hbase.client.Table
Regardless of this, the built package will also work with HBase 2.4.1. 

Wait until the build is completed. 

20210206115831-image.png

The Spark connector JAR file locates in ~/hbase-connectors/spark/hbase-spark/target/hbase-spark-1.0.1-SNAPSHOT.jar.

Run Spark shell

For simplicity, I will directly use Spark Shell (Scala) for this demo. You can use PySpark, Scala or other Spark supported languages  to implement the logic in a script. 

Start Spark-Shell with HBase connector

Start Spark Shell using the following command:

spark-shell --jars ~/hbase-connectors/spark/hbase-spark/target/hbase-spark-1.0.1-SNAPSHOT.jar -c spark.ui.port=11111

Remember to change hbase-spark package to your own location. 

Once Spark session is created successfully, the terminal looks like the following screenshot:

20210205101618-image.png

Create DataFrame

1) First import the required classes:

import org.apache.hadoop.hbase.spark.HBaseContext
import org.apache.hadoop.hbase.HBaseConfiguration

2) Create HBase configurations

val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.quorum", "127.0.0.1:10231")

3) Create HBase context

// Instantiate HBaseContext that will be used by the following code
new HBaseContext(spark.sparkContext, conf)
4) Create DataFrame
val hbaseDF = (spark.read.format("org.apache.hadoop.hbase.spark")
 .option("hbase.columns.mapping",
   "rowKey STRING :key," +
   "firstName STRING Name:First, lastName STRING Name:Last," +
   "country STRING Address:Country, state STRING Address:State"
 )
 .option("hbase.table", "Person")
 ).load()
 
The columns mapping matches with the definition in the steps above.

5) Show DataFrame schema
scala> hbaseDF.schema
res2: org.apache.spark.sql.types.StructType = StructType(StructField(lastName,StringType,true), StructField(country,StringType,true), StructField(state,StringType,true), StructField(firstName,StringType,true), StructField(rowKey,StringType,true))
6) Show data
hbaseDF.show()
The output should look something like the following screenshot:
20210206121405-image.png
Till now, we've successfully loaded data from HBase in Spark 3.0.1.
You can also write into HBase from Spark too. Refer to the API documentation for more details. 

Use catalog

We can also define a catalog for the table Person created above and then use it to read data.

1) Define catalog

def catalog = s"""{
    |"table":{"namespace":"default", "name":"Person"},
    |"rowkey":"key",
    |"columns":{
    |"rowkey":{"cf":"rowkey", "col":"key", "type":"string"},
    |"firstName":{"cf":"Name", "col":"First", "type":"string"},
    |"lastName":{"cf":"Name", "col":"Last", "type":"string"},
    |"country":{"cf":"Address", "col":"Country", "type":"string"},
    |"state":{"cf":"Address", "col":"State", "type":"string"}
    |}
|}""".stripMargin

2) Use catalog

Now the catalog can be directly passed into as tableCatalog option:

import org.apache.hadoop.hbase.spark.datasources._

(spark.read
.options(Map(HBaseTableCatalog.tableCatalog->catalog))
.format("org.apache.hadoop.hbase.spark")
.load()).show()

The code can also be simplified as:

(spark.read.format("org.apache.hadoop.hbase.spark")
.option("catalog",catalog)
.load()).show()
Output:
scala> (spark.read
     | .options(Map(HBaseTableCatalog.tableCatalog->catalog))
     | .format("org.apache.hadoop.hbase.spark")
     | .load()).show()
+--------+------+---------+-----+---------+
|lastName|rowkey|  country|state|firstName|
+--------+------+---------+-----+---------+
|    Tang|     1|Australia|  VIC|  Raymond|
|    Gnat|     2|      USA|   CA|  Dnomyar|
+--------+------+---------+-----+---------+

Summary

Unfortunately the connector packages for Spark 3.x are not published to Maven central repositories yet. 

To save time for building hbase-connector project, you can download it from the ones I built using WSL: Release 1.0.1 HBase Connectors for Spark 3.0.1 · kontext-tech/hbase-connectors.

More from Kontext
comment Comments
H Huy Phạm

Huy access_time 18 days ago link more_vert

Hello Raymond, I'm having some errors when building the connector, I am using spark 3.2.2 on a separate cluster reading data from hbase 2.0.2 (on HDP), hadoop version 3.1.1, scala 2.12.15. Hope you will respond ! 

20241106100031-image.png

Raymond Raymond

Raymond access_time 15 days ago link more_vert

What is  the command line you used to build? The example I provided was for the following versions:

mvn -Dspark.version=3.0.1 -Dscala.version=2.12.10 -Dscala.binary.version=2.12 -Dhbase.version=2.2.4 -Dhadoop.profile=3.0 -Dhadoop-three.version=3.2.0 -DskipTests -Dcheckstyle.skip -U clean package

If you are using the latest release code of hbase-connector, you can find the Spark and Hadoop versions here:

1.0.1


The HBase version in that release is 2.5.4.

H Huy Phạm

Huy access_time 13 days ago link more_vert

Thank you for your feedback. Currently, I want to try using spark 3 to read and write data with hbase, is there a way to do this because the hbase version is quite old 2.0.2 (HDP). Your above method does not work with the command below: "mvn -Dspark.version=3.2.2 -Dscala.version=2.12.15 -Dscala.binary.version=2.12 -Dhbase.version=2.0.2 -Dhadoop.profile=3.0 -Dhadoop-three.version=3.1.1 -DskipTests -Dcheckstyle.skip -U clean package "


Administrator Administrator

Administrator access_time 13 days ago link more_vert

Based on my limited knowledge that won’t work as the libs referenced are different. You can fork from the repo to customize the referenced library versions to see if it works.

C cansın tartıcı

cansın access_time 3 years ago link more_vert

Hi Raymond thanks for the article.

I have managed to create my own jar and connect to shell with following command:
spark-shell --jars hbase-connectors/spark/hbase-spark/target/hbase-spark-1.0.1-SNAPSHOT.jar

but when I write my imports I get following error: 

scala> import org.apache.hadoop.hbase.spark.HBaseContext

import org.apache.hadoop.hbase.spark.HBaseContext

scala> import org.apache.hadoop.hbase.HBaseConfiguration

<console>:24: error: object HBaseConfiguration is not a member of package org.apache.hadoop.hbase

       import org.apache.hadoop.hbase.HBaseConfiguration

Do you have any idea that what what might be wrong?


Raymond Raymond

Raymond access_time 3 years ago link more_vert

Just to follow up on this one as I didn't hear back from you. Have you resolved this problem?

Raymond Raymond

Raymond access_time 3 years ago link more_vert

Hi cansın,

What is your version of HBase?

And also can you specify the full path to your spark-hbase connector jar file? For example, in the example I provided in this article, I am using ~/

spark-shell --jars ~/hbase-connectors/spark/hbase-spark/target/hbase-spark-1.0.1-SNAPSHOT.jar


PK Pavan Kumar Yerravelly

Pavan Kumar access_time 4 years ago link more_vert

Hi @Raymond,

Thanks for this informative article. I followed the steps mentioned in this. But seeing the below error while building the project. It would be great if could you help me resolve the issue.

Thanks in advance.



Raymond Raymond

Raymond access_time 4 years ago link more_vert

Hi Pravan,

Is your Maven version is Apache Maven 3.6.0? 

If you are using Spark 3.0.1 with HBase 2.4.1, you can directly try the one I built:

1.0.1 HBase Connectors for Spark 3.0.1 

PK Pavan Kumar Yerravelly

Pavan Kumar access_time 4 years ago link more_vert

Thanks for pointing that @Raymond. My Hadoop, Spark, Scala, and Hbase versions are 3.2.1, 3.1.1,2.12, and 2.4.7 respectively.

Maven build:

mvn -Dspark.version=3.1.1 -Dscala.version=2.12.10 -Dscala.binary.version=2.12 -Dhbase.version=2.4.7 -Dhadoop.profile=3.0 -Dhadoop-three.version=3.2.1 -DskipTests -Dcheckstyle.skip -U clean package

I have upgraded Maven and the issue is resolved. But seeing a compilation error as below.

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile (default-compile) on project hbase-kafka-proxy: Compilation failure

[ERROR] /home/ec2-user/git/spark-hbase/hbase-connectors/kafka/hbase-kafka-proxy/src/main/java/org/apache/hadoop/hbase/kafka/KafkaTableForBridge.java:[53,8] org.apache.hadoop.hbase.kafka.KafkaTableForBridge is not abstract and does not override abstract method getRegionLocator() in org.apache.hadoop.hbase.client.Table

I would be so grateful if you could help me with what I need to learn to resolve such issues.

Thank you so much for your help.

Raymond Raymond

Raymond access_time 4 years ago link more_vert

Hi Pavan,

The issue you encountered is the same one I mentioned in the article due to incompatible version of the HBase and connector code. 

For HBase version, I have to use 2.2.4 as the latest hbase-connector code was based on that version. 

So please try the following command:

mvn -Dspark.version=3.1.1 -Dscala.version=2.12.10 -Dscala.binary.version=2.12 -Dhbase.version=2.2.4 -Dhadoop.profile=3.0 -Dhadoop-three.version=3.2.1 -DskipTests -Dcheckstyle.skip -U clean package

The built package should still work with HBase 2.4.7.


Regards,

Raymond

PK Pavan Kumar Yerravelly

Pavan Kumar access_time 4 years ago link more_vert

Awesome!
That worked. Thanks again for your help, Raymond.

Raymond Raymond

Raymond access_time 4 years ago link more_vert
I'm glad to hear that. Since the HBase minor version is slightly different, it might be possible that the package will cause unexpected problem though the possibility is low since the major version is the same. Please let me know if you encounter issue like that. 
PK Pavan Kumar Yerravelly

Pavan Kumar access_time 4 years ago link more_vert

I think there is no issue with the build. But I'm unable to connect to Hbase from Spark. I'm using a docker environment where Zookeeper, HDFS, Spark, and HBase run in different containers in the same network.

Here are the jars I'm using.

spark-shell --jars hbase-spark-protocol-shaded-1.0.0.7.2.12.0-291.jar,htrace-core4-4.2.0-incubating.jar,hbase-shaded-protobuf-3.5.1.jar,protobuf-java-2.5.0.jar,hbase-protocol-2.4.8.jar,hbase-shaded-miscellaneous-3.5.1.jar,hbase-mapreduce-2.4.8.jar,hbase-server-2.4.8.jar,hbase-client-2.4.8.jar,hbase-common-2.4.8.jar,hbase-spark-1.0.1-SNAPSHOT.jar,hadoop-common-2.8.5.jar --files hbase-site.xml

I have almost all the required jars but still seeing below error. I tried my best to debug the isue but didn't find a way to get rid of this. Please advise me how to resolve this or redirect me if there is any detailed documentation about prerequisites.

java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/shaded/protobuf/generated/MasterProtos$MasterService$BlockingInterface

  at java.lang.ClassLoader.defineClass1(Native Method)

  at java.lang.ClassLoader.defineClass(ClassLoader.java:757)

  at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)

Raymond Raymond

Raymond access_time 4 years ago link more_vert

Are all those jars included in the current directory where you initiated the spark-shell?

You can manually put them into \jars directory in your Spark installation. 

PK Pavan Kumar Yerravelly

Pavan Kumar access_time 4 years ago link more_vert

Yes, they all are in current directory. Can we connect if possible?

Administrator Administrator

Administrator access_time 4 years ago link more_vert

Please contact us via: Contact us and we will try to arrange a Teams session for you.

Please log in or register to comment.

account_circle Log in person_add Register

Log in with external accounts