Convert Python Dictionary List to PySpark DataFrame
This article shows how to convert a Python dictionary list to a DataFrame in Spark using Python.
Example dictionary list
data = [{"Category": 'Category A', "ID": 1, "Value": 12.40}, {"Category": 'Category B', "ID": 2, "Value": 30.10}, {"Category": 'Category C', "ID": 3, "Value": 100.01} ]
The above dictionary list will be used as the input.
Solution 1 - Infer schema from dict
In Spark 2.x, schema can be directly inferred from dictionary. The following code snippets directly create the data frame using SparkSession.createDataFrame function.
Code snippet
from pyspark.sql import SparkSession appName = "Python Example - PySpark Parsing Dictionary as DataFrame" master = "local" # Create Spark session spark = SparkSession.builder \ .appName(appName) \ .master(master) \ .getOrCreate() # List data = [{"Category": 'Category A', "ID": 1, "Value": 12.40}, {"Category": 'Category B', "ID": 2, "Value": 30.10}, {"Category": 'Category C', "ID": 3, "Value": 100.01} ] # Create data frame df = spark.createDataFrame(data) print(df.schema) df.show()
Output
The following is the output from the above PySpark script.
session.py:340: UserWarning: inferring schema from dict is deprecated,please use pyspark.sql.Row instead
warnings.warn("inferring schema from dict is deprecated,"
StructType(List(StructField(Category,StringType,true),StructField(ID,LongType,true),StructField(Value,DoubleType,true)))
+----------+---+------+
| Category| ID| Value|
+----------+---+------+
|Category A| 1| 12.4|
|Category B| 2| 30.1|
|Category C| 3|100.01|
+----------+---+------+
StructType(List(StructField(Category,StringType,true),StructField(ID,LongType,true),StructField(Value,DoubleType,true)))
However there is one warning:
Warning: inferring schema from dict is deprecated,please use pyspark.sql.Row instead
Solution 2 - Use pyspark.sql.Row
As the warning message suggests in solution 1, we are going to use pyspark.sql.Row in this solution.
Code snippet
from pyspark.sql import SparkSession, Row appName = "Python Example - PySpark Parsing Dictionary as DataFrame" master = "local" # Create Spark session spark = SparkSession.builder \ .appName(appName) \ .master(master) \ .getOrCreate() # List data = [{"Category": 'Category A', "ID": 1, "Value": 12.40}, {"Category": 'Category B', "ID": 2, "Value": 30.10}, {"Category": 'Category C', "ID": 3, "Value": 100.01} ] # Create data frame df = spark.createDataFrame([Row(**i) for i in data]) print(df.schema) df.show()
Solution 3 - Explicit schema
schema = StructType([ StructField('Category', StringType(), False), StructField('ID', IntegerType(), False), StructField('Value', DecimalType(scale=2), True) ])
Code snippet
from pyspark.sql import SparkSession from pyspark.sql.types import ArrayType, StructField, StructType, StringType, IntegerType, DecimalType from decimal import Decimal appName = "Python Example - PySpark Parsing Dictionary as DataFrame" master = "local" # Create Spark session spark = SparkSession.builder \ .appName(appName) \ .master(master) \ .getOrCreate() # List data = [{"Category": 'Category A', "ID": 1, "Value": Decimal(12.40)}, {"Category": 'Category B', "ID": 2, "Value": Decimal(30.10)}, {"Category": 'Category C', "ID": 3, "Value": Decimal(100.01)} ] schema = StructType([ StructField('Category', StringType(), False), StructField('ID', IntegerType(), False), StructField('Value', DecimalType(scale=2), True) ]) # Create data frame df = spark.createDataFrame(data, schema) print(df.schema) df.show()
There are many different ways to achieve the same goal. Let me know if you have other options.
Hi Raymond,
wonderful Article ,Was just confused at below line :
df = spark.createDataFrame([Row(**i) for i in data])
I assume Row class needs input like
row=Row(Category= 'Category A', ID= 1,Value=1) so how this is getting translated here..
or is it like when we give input like a key ,val,it understands and creates schema correctly ?